博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Netty 5用户指南(一)
阅读量:6253 次
发布时间:2019-06-22

本文共 8981 字,大约阅读时间需要 29 分钟。

前言

问题

现如今我们使用通用的应用程序或者类库来实现系统之间地互相访问,比如我们经常使用一个HTTP客户端来从web服务器上获取信息,或者通过web service来执行一个远程的调用。

然而,有时候一个通用的协议和他的实现并没有覆盖一些场景。比如我们无法使用一个通用的HTTP服务器来处理大文件、电子邮件、近实时消息比如财务信息和多人游戏数据。我们需要一个合适的协议来处理一些特殊的场景。例如你可以实现一个优化的Ajax的聊天应用、媒体流传输或者是大文件传输的HTTP服务器,你甚至可以自己设计和实现一个新的协议来准确地实现你的需求。

另外不可避免的事情是你不得不处理这些私有协议来确保和原有系统的互通。这个例子将会展示如何快速实现一个不影响应用程序稳定性和性能的协议。

解决方案

是一个提供异步事件驱动的网络应用框架,用以快速开发高性能、高可靠性的网络服务器和客户端程序。

换句话说,Netty是一个NIO框架,使用它可以简单快速地开发网络应用程序,比如客户端和服务端的协议。Netty大大简化了网络程序的开发过程比如TCP和UDP的 Socket的开发。

“快速和简单”并不意味着应用程序会有难维护和性能低的问题,Netty是一个精心设计的框架,它从许多协议的实现中吸收了很多的经验比如FTP、SMTP、HTTP、许多二进制和基于文本的传统协议,Netty在不降低开发效率、性能、稳定性、灵活性情况下,成功地找到了解决方案。

有一些用户可能已经发现其他的一些网络框架也声称自己有同样的优势,所以你可能会问是Netty和它们的不同之处。答案就是Netty的哲学设计理念。Netty从第一天开始就为用户提供了用户体验最好的API以及实现设计。正是因为Netty的设计理念,才让我们得以轻松地阅读本指南并使用Netty。

入门指南

这个章节会介绍Netty核心的结构,并通过一些简单的例子来帮助你快速入门。当你读完本章节你马上就可以用Netty写出一个客户端和服务端。

如果你在学习的时候喜欢“自顶向下(top-down)”的方法,那你可能需要要从第二章《架构概述》开始,然后再回到这里。

开始之前

运行本章节中的两个例子最低要求是:Netty的最新版本(Netty5)和JDK1.6及以上。最新的Netty版本在项目可以找到。为了下载到正确的JDK版本,请到你喜欢的网站下载。

阅读本章节过程中,你可能会对相关类有疑惑,关于这些类的详细的信息请请参考API说明文档。为了方便,所有文档中涉及到的类名字都会被关联到一个在线的API说明。当然如果有任何错误信息、语法错误或者你有任何好的建议来改进文档说明,那么请联系N。

DISCARD服务(丢弃服务,指的是会忽略所有接收的数据的一种协议)

世界上最简单的协议不是”Hello,World!”,是,他是一种丢弃了所有接受到的数据,并不做有任何的响应的协议。

为了实现DISCARD协议,你唯一需要做的就是忽略所有收到的数据。让我们从处理器的实现开始,处理器是由Netty生成用来处理I/O事件的。

package io.netty.example.discard;import io.netty.buffer.ByteBuf;import io.netty.channel.ChannelHandlerContext;import io.netty.channel.ChannelHandlerAdapter;/** * Handles a server-side channel. */public class DiscardServerHandler extends ChannelHandlerAdapter { // (1)    @Override    public void channelRead(ChannelHandlerContext ctx, Object msg) { // (2)        // Discard the received data silently.        ((ByteBuf) msg).release(); // (3)    }    @Override    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { // (4)        // Close the connection when an exception is raised.        cause.printStackTrace();        ctx.close();    }}
  1. DisCardServerHandler 继承自 ,这个类实现了接口,提供了许多事件处理的接口方法,然后你可以覆盖这些方法。现在仅仅只需要继承类而不是你自己去实现接口方法。
  2. 这里我们覆盖了chanelRead()事件处理方法。每当从客户端收到新的数据时,这个方法会在收到消息时被调用,这个例子中,收到的消息的类型是
  3. 为了实现DISCARD协议,处理器不得不忽略所有接受到的消息。是一个引用计数对象,这个对象必须显示地调用release()方法来释放。请记住处理器的职责是释放所有传递到处理器的引用计数对象。通常,channelRead()方法的实现就像下面的这段代码:
    @Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {    try {        // Do something with msg    } finally {        ReferenceCountUtil.release(msg);    }}
  4. exceptionCaught()事件处理方法是当出现Throwable对象才会被调用,即当Netty由于IO错误或者处理器在处理事件时抛出的异常时。在大部分情况下,捕获的异常应该被记录下来并且把关联的channel给关闭掉。然而这个方法的处理方式会在遇到不同异常的情况下有不同的实现,比如你可能想在关闭连接之前发送一个错误码的响应消息。

到目前为止一切都还比较顺利,我们已经实现了DISCARD服务的一半功能,剩下的需要编写一个main()方法来启动服务端的DiscardServerHandler。

package io.netty.example.discard;import io.netty.bootstrap.ServerBootstrap;import io.netty.channel.ChannelFuture;import io.netty.channel.ChannelInitializer;import io.netty.channel.ChannelOption;import io.netty.channel.EventLoopGroup;import io.netty.channel.nio.NioEventLoopGroup;import io.netty.channel.socket.SocketChannel;import io.netty.channel.socket.nio.NioServerSocketChannel;/** * Discards any incoming data. */public class DiscardServer {    private int port;    public DiscardServer(int port) {        this.port = port;    }    public void run() throws Exception {        EventLoopGroup bossGroup = new NioEventLoopGroup(); // (1)        EventLoopGroup workerGroup = new NioEventLoopGroup();        try {            ServerBootstrap b = new ServerBootstrap(); // (2)            b.group(bossGroup, workerGroup)             .channel(NioServerSocketChannel.class) // (3)             .childHandler(new ChannelInitializer<SocketChannel>() { // (4)                 @Override                 public void initChannel(SocketChannel ch) throws Exception {                     ch.pipeline().addLast(new DiscardServerHandler());                 }             })             .option(ChannelOption.SO_BACKLOG, 128)          // (5)             .childOption(ChannelOption.SO_KEEPALIVE, true); // (6)            // Bind and start to accept incoming connections.            ChannelFuture f = b.bind(port).sync(); // (7)            // Wait until the server socket is closed.            // In this example, this does not happen, but you can do that to gracefully            // shut down your server.            f.channel().closeFuture().sync();        } finally {            workerGroup.shutdownGracefully();            bossGroup.shutdownGracefully();        }    }    public static void main(String[] args) throws Exception {        int port;        if (args.length > 0) {            port = Integer.parseInt(args[0]);        } else {            port = 8080;        }        new DiscardServer(port).run();    }}
  1.  是用来处理I/O操作的多线程事件循环器,Netty提供了许多不同的的实现用来处理不同传输协议。在这个例子中我们实现了一个服务端的应用,因此会有2个会被使用。第一个经常被叫做‘boss’,用来接收进来的连接。第二个经常被叫做‘worker’,用来处理已经被接收的连接,一旦‘boss’接收到连接,就会把连接信息注册到‘worker’上。如何知道多少个线程已经被使用,如何映射到已经创建的s上都需要依赖于的实现,并且可以通过构造函数来配置他们的关系。
  2.  是一个启动NIO服务的辅助启动类。你可以在这个服务中直接使用,但是这会是一个复杂的处理过程,在很多情况下你并不需要这样做。
  3. 这里我们指定使用类来举例说明一个新的如何接收进来的连接。
  4. 这里的事件处理类经常会被用来处理一个最近的已经接收的。是一个特殊的处理类,他的目的是帮助使用者配置一个新的。也许你想通过增加一些处理类比如DiscardServerHandle来配置一个新的或者其对应的来实现你的网络程序。当你的程序变的复杂时,可能你会增加更多的处理类到pipline上,然后提取这些匿名类到最顶层的类上。
  5. 你可以设置这里指定的通道实现的配置参数。我们正在写一个TCP/IP的服务端,因此我们被允许设置socket的参数选项比如tcpNoDelay和keepAlive。请参考和详细的实现的接口文档以此可以对ChannelOptions的有一个大概的认识。
  6. 你关注过option()和childOption()吗?option()是提供给用来接收进来的连接。childOption()是提供给由父管道接收到的连接,在这个例子中也是。
  7. 我们继续,剩下的就是绑定端口然后启动服务。这里我们在机器上绑定了机器所有网卡上的8080端口。当然现在你可以多次调用bind()方法(基于不同绑定地址)。

恭喜!你已经完成熟练地完成了第一个基于Netty的服务端程序。

观察接收到的数据

现在我们已经编写出我们第一个服务端,我们需要测试一下他是否真的可以运行。最简单的测试方法是用telnet 命令。例如,你可以在命令行上输入telnet localhost 8080或者其他类型参数。

然而我们能说这个服务端是正常运行了吗?事实上我们也不知道因为他是一个discard服务,你根本不可能得到任何的响应。为了证明他仍然是在工作的,让我们修改服务端的程序来打印出他到底接收到了什么。

我们已经知道channelRead()方法是在数据被接收的时候调用。让我们放一些代码到DiscardServerHandler类的channelRead()方法。

@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {    ByteBuf in = (ByteBuf) msg;    try {        while (in.isReadable()) { // (1)            System.out.print((char) in.readByte());            System.out.flush();        }    } finally {        ReferenceCountUtil.release(msg); // (2)    }}
  1. 这个低效的循环事实上可以简化为:System.out.println(in.toString(io.netty.util.CharsetUtil.US_ASCII))
  2. 或者,你可以在这里调用in.release()。

如果你再次运行telnet命令,你将会看到服务端打印出了他所接收到的消息。

完整的discard server代码放在了包下面。

ECHO服务(响应式协议)

到目前为止,我们虽然接收到了数据,但没有做任何的响应。然而一个服务端通常会对一个请求作出响应。让我们学习怎样在协议的实现下编写一个响应消息给客户端,这个协议针对任何接收的数据都会返回一个响应。

和discard server唯一不同的是把在此之前我们实现的channelRead()方法,返回所有的数据替代打印接收数据到控制台上的逻辑。因此,需要把channelRead()方法修改如下:

@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {    ctx.write(msg); // (1)    ctx.flush(); // (2)}

1. 对象提供了许多操作,使你能够触发各种各样的I/O事件和操作。这里我们调用了write(Object)方法来逐字地把接受到的消息写入。请注意不同于DISCARD的例子我们并没有释放接受到的消息,这是因为当写入的时候Netty已经帮我们释放了。

2. ctx.write(Object)方法不会使消息写入到通道上,他被缓冲在了内部,你需要调用ctx.flush()方法来把缓冲区中数据强行输出。或者你可以用更简洁的cxt.writeAndFlush(msg)以达到同样的目的。

如果你再一次运行telnet命令,你会看到服务端会发回一个你已经发送的消息。

完整的echo服务的代码放在了包下面。

TIME服务(时间协议的服务)

在这个部分被实现的协议是协议。和之前的例子不同的是在不接受任何请求时他会发送一个含32位的整数的消息,并且一旦消息发送就会立即关闭连接。在这个例子中,你会学习到如何构建和发送一个消息,然后在完成时主动关闭连接。

因为我们将会忽略任何接收到的数据,而只是在连接被创建发送一个消息,所以这次我们不能使用channelRead()方法了,代替他的是,我们需要覆盖channelActive()方法,下面的就是实现的内容:

package io.netty.example.time;public class TimeServerHandler extends ChannelHandlerAdapter {    @Override    public void channelActive(final ChannelHandlerContext ctx) { // (1)        final ByteBuf time = ctx.alloc().buffer(4); // (2)        time.writeInt((int) (System.currentTimeMillis() / 1000L + 2208988800L));        final ChannelFuture f = ctx.writeAndFlush(time); // (3)        f.addListener(new ChannelFutureListener() {            @Override            public void operationComplete(ChannelFuture future) {                assert f == future;                ctx.close();            }        }); // (4)    }    @Override    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {        cause.printStackTrace();        ctx.close();    }}
  1. channelActive()方法将会在连接被建立并且准备进行通信时被调用。因此让我们在这个方法里完成一个代表当前时间的32位整数消息的构建工作。
  2. 为了发送一个新的消息,我们需要分配一个包含这个消息的新的缓冲。因为我们需要写入一个32位的整数,因此我们需要一个至少有4个字节的。通过ChannelHandlerContext.alloc()得到一个当前的ByteBufAllocator,然后分配一个新的缓冲。
  3. 和往常一样我们需要编写一个构建好的消息。但是等一等,flip在哪?难道我们使用NIO发送消息时不是调用java.nio.ByteBuffer.flip()吗?ByteBuf之所以没有这个方法因为有两个指针,一个对应读操作一个对应写操作。当你向ByteBuf里写入数据的时候写指针的索引就会增加,同时读指针的索引没有变化。读指针索引和写指针索引分别代表了消息的开始和结束。比较起来,NIO缓冲并没有提供一种简洁的方式来计算出消息内容的开始和结尾,除非你调用flip方法。当你忘记调用flip方法而引起没有数据或者错误数据被发送时,你会陷入困境。这样的一个错误不会发生在Netty上,因为我们对于不同的操作类型有不同的指针。你会发现这样的使用方法会让你过程变得更加的容易,因为你已经习惯一种没有使用flip的方式。另外一个点需要注意的是ChannelHandlerContext.write()(和writeAndFlush())方法会返回一个对象,一个代表了一个还没有发生的I/O操作。这意味着任何一个请求操作都不会马上被执行,因为在Netty里所有的操作都是异步的。举个例子下面的代码中在消息被发送之前可能会先关闭连接。
    Channel ch = ...;ch.writeAndFlush(message);ch.close();

    因此你需要在write()方法返回的ChannelFuture完成后调用close()方法,然后当他的写操作已经完成他会通知他的监听者。请注意,close()方法也可能不会立马关闭,他也会返回一个。

  4. 当一个写请求已经完成是如何通知到我们?这个只需要简单地在返回的ChannelFuture上增加一个。这里我们构建了一个匿名的类用来在操作完成时关闭Channel。或者,你可以使用简单的预定义监听器代码:
    f.addListener(ChannelFutureListener.CLOSE);

为了测试我们的time服务如我们期望的一样工作,你可以使用UNIX的rdate命令

$ rdate -o 
-p

Port是你在main()函数中指定的端口,host使用locahost就可以了。

  • 转载自 
你可能感兴趣的文章
软件项目如何选型
查看>>
UVa 11205 - The broken pedometer
查看>>
[书目20150727]选择重于一切(扎克伯格给年轻人的37个人生忠告)
查看>>
Apache与Nginx的优缺点比较
查看>>
【第二篇】Volley的使用之加载图片
查看>>
hdu oj1102 Constructing Roads(最小生成树)
查看>>
减少可执行程序size的三个常用软件
查看>>
窥探Swift之别样的枚举类型
查看>>
pyspark简要原则
查看>>
【移动开发】Android中WIFI开发总结(二)
查看>>
idea git merge代码
查看>>
云计算设计模式(二十二)——静态内容托管模式
查看>>
[Angularjs]ng-file-upload上传文件
查看>>
修改类不用重启Tomcat加载整个项目
查看>>
iframe刷新父页面
查看>>
KL46 custom board SWD reset is never asserted - SWS Waveform
查看>>
如何提高团队管理能力1
查看>>
Redmine中使用SVN进行版本管理经验总结
查看>>
【OC语法要闻速览】一、方法调用
查看>>
Oracle 重建索引脚本
查看>>